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Abstract

In this paper, an effective nonstationary phase boundary estimation scheme in electrical impedance tomography is pre-
sented based on the unscented Kalman filter. The inverse problem is treated as a stochastic nonlinear state estimation
problem with the nonstationary phase boundary (state) being estimated online with the aid of unscented Kalman filter.
This research targets the industrial applications, such as imaging of stirrer vessel for detection of air distribution or detect-
ing large air bubbles in pipelines. Within the domains, there exist ‘‘voids” having zero conductivity. The design variables
for phase boundary estimation are truncated Fourier coefficients. Computer simulations and experimental results are pro-
vided to evaluate the performance of unscented Kalman filter in comparison with extended Kalman filter to show a better
performance of the unscented Kalman filter approach.
� 2008 Published by Elsevier Inc.
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1. Introduction

Flow of a mixture of two fluids in pipes is of great interest to researchers. The liquid–gas or liquid-vapor
mixtures are encountered in condensers and evaporators, gas–liquid reactors, and combustion systems [9,31].
In some cases, the transport of materials is accomplished by making a slurry of the solid particles in a liquid
and pumping the mixture through a pipe. Liquid–liquid mixtures are encountered when dealing with emul-
sions as well as in liquid–liquid extraction. An example could be two-phase flow that can occur under normal
and accidental conditions in various processes such as heat exchange, steam power generation, and oil or nat-
ural gas pumping systems. Another example is the flow of two immiscible liquids in pipelines that are of
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particular interest in many engineering applications. As a typical example, liquid hydrocarbons transported in
pipelines over a long distance (for example, crude oil, gasoline, diesel) often contain free water [5]. Knowledge
of the binary mixture flow is important in the design and operation of such systems. As the heterogeneous
phase affects the safety, control, operation, and optimization of the process, it is important to know the phase
boundaries online without disturbing the flow fields. For the visualization of two-phase flow, various tomog-
raphy techniques with noninvasive and nonintrusive characteristics have been developed, for example, gamma
densitometry [32], ultrasonic imaging [44] and nuclear magnetic resonance imaging [7]. Electrical impedance
tomography (EIT) [29,43] has been used quite often in the medical field, as an alternative to X-ray imaging,
computerizied tomography (CT), gamma camera, magnetic resonance imaging (MRI) and ultrasound tomog-
raphy (UST). Some of these techniques are expensive and even cause adverse health effects. EIT, therefore, has
been employed to investigate two-phase flow phenomena [11], because it is relatively inexpensive and has good
temporal resolution. However, it suffers from poor spatial resolution as it has diffusive and soft-field charac-
teristics and this needs to be improved. At the same time, the data acquisition time in EIT is fast which makes
it more suitable for fast transient processes.

Image reconstruction in EIT is a kind of nonlinear optimization problem in which the solution is obtained
iteratively through forward and inverse solvers. The physical relationship between the internal conductivity
and surface voltages is governed by a partial differential equation with an appropriate boundary condition.
It is, in most cases, impossible to obtain an analytical solution for the forward problem so that a numerical
technique such as the finite element method (FEM) is employed. Reconstruction algorithms for EIT can be
classified into two categories. Firstly, the so-called ‘static imaging techniques’ are used for the case where
the internal conductivity of the body is time invariant within the time taken to acquire a full set of measure-
ment data [45]. Therefore, these static imaging techniques often fail when there are fast impedance changes. In
the other category, there are the so-called ‘dynamic imaging techniques’, which have been introduced to
enhance the temporal resolution for situations where the conductivity distribution inside the body changes
rapidly. In these dynamic approaches, the temporal resolution can be improved by a factor of p (p is the num-
ber of current patterns in a conventional frame). The reduction in current patterns is also made possible by the
analysis of current patterns to use only the optimal current patterns in a dynamic scenario. With regard to
optimal current patterns, Isaacson [10] showed that the best current patterns to distinguish a central concentric
inhomogeneity inside an otherwise homogeneous circular conductor are trigonometric current patterns. Gisser
et al. [6] compared the distinguishabilities by using adjacent, opposite and cosine current patterns on a circular
conductor model without a centered circular target and showed that the maximum cosine current equal to the
current injected with the opposite or the adjacent electrode is the optimum current pattern. Newell et al. [30]
showed that cosine current patterns can distinguish smaller inhomogeneities as compared to when opposite
and adjacent current patterns are used. It is generally known that opposite current patterns are optimal if
the total current (sum of the amplitude of injected currents) is kept constant and trigonometric current pat-
terns are optimum if the maximum of the injected current is kept constant. With or without using the optimal
current patterns (usually, the first two modes of cosine and sine patterns), many dynamic techniques were
developed, in which the inverse problem is treated as a nonlinear state estimation problem in which the
time-varying state is estimated with the aid of a linearized Kalman filter (LKF) [39,41], extended Kalman filter
(EKF) [15], and interacting multiple model (IMM) that uses multiple EKFs [16,18]. The state evolution model
used in these dynamical approaches is the random-walk model in which the rate of evolution is governed by
the covariance of the process noise. However, the modelling uncertainty of the random-walk model may be
large enough to cause significant negative effects on the quality of the reconstructed image.

Having laid the foundation for two-phase flow estimation and dynamic imaging, a special class of EIT
inverse problems is discussed hereafter, in which the position and shape of the objects in the domains are
unknown and to be identified, while the conductivities of these objects are known a priori. There are two types
of such problems for binary mixtures according to the topology of the boundary to be estimated: open bound-
ary problems in which the object domain can be divided into two disjoint regions which are separated by an
open boundary [3,4,24,27,34–37]; and closed boundary problems, in which the anomalies are enclosed by the
background substance and which are used in this study.

It is also worth mentioning that the boundary detection could also be considered using the well-known
level-set methods. The level-set method was first proposed by Osher and Sethian [46] for tracing interfaces
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between different phases of fluid flows. Rondi and Santosa [47] applied and analyzed phase-filed methods to
the reconstruction of piecewise constant conductivities in EIT. Following the work on level sets in [48–50], a
method based on level-set method is proposed in [4] to solve the inverse problem arising from EIT by mini-
mizing the L2-norm of the difference between the potential and measured voltage and by incorporating total
variational regularization. In [51], results are shown from a narrow-band level-set method applied to 2D and
3D EIT incorporating limited angle ultrasound time of flight data which is reported as an improvement over
[52] that considers EIT only. The narrow-band technique for calculating Jacobian results in computationally
efficient and fast algorithm and in [53], application of EIT for cryosurgery monitoring is considered in which
the cancerous tissue is treated by local freezing technique using a small needle-like cryosurgery probe and the
interface between the frozen and non frozen tissue is monitored using level-set method. In [54], the level-set
regularization is considered for EIT and Gauss–Newton methods are applied. In general, using an iterative
method with an update formula for level-set functions, the interface between two materials can be recovered
well in the domain of EIT. Although, level-set method was initially introduced for tracking propagating
boundaries, they are generally used for tracking static interfaces for the reason that they are slow, i.e., the
computational cost is very high as they need many iterations (hundreds of nonlinear steps). So, it is desirable
to have a cost-effective inverse algorithm which not only tracks dynamic interfaces, but can also handle higher
level of noise in the measurement and requires less measurement data. Therefore, the Kalman-type reconstruc-
tion algorithms serve this purpose as they are modelled on a Markov chain and traditionally built on linear
operators perturbed by Gaussian noise. Since, image reconstruction in EIT is a nonlinear problem, therefore,
the nonlinear version of Kalman-type filters should be considered.

In context of the boundary representation scheme used in this paper, Han and Prosperetti [8] considered a
shape decomposition technique based on the boundary element method, where the boundary of each target
was represented in terms of Fourier coefficients rather than a point-wise discretization. Kolehmainen et al.
[25] developed an algorithm to recover the region boundaries of piecewise constant coefficients of an elliptic
partial differential equation (PDE) from boundary data for the application to optical tomography, which is
also applicable to EIT [19]. For an optimal solution of the Fourier coefficients, a Newton-type method is
employed, which is usually time consuming although it shows good performance in many optimization prob-
lems. However, its down side is the slow convergence which has an adverse effect in the application to mixture
flows undergoing fast transient. Jeon et al. [14] estimated the Fourier coefficients with the use of a multi-lay-
ered neural network (MNN) because of its conceptual simplicity, fast online calculation, ease of implementa-
tion, ability to control the compromise between the noise treatment and spatial resolution and most
importantly, it does not require linearization of the problem (use of first derivative i.e, Jacobian). The neural
network used was backpropagation neural network which is regarded as a universal approximator. At the
same time, Kim et al. [17] used the exact expression of Jacobian and tested it successfully with experimental
data. Kim et al. [21] improves the performance by considering weighted multi-layered neural networks, each
working together with a different sigmoid function. Since the higher modes of Fourier coefficients are more
sensitive to noise so Kim et al. [22] proposed the use of front points in polar coordinates to estimate the closed
boundary. The proposed scheme lacked analytical Jacobian and perturbation method was used to estimate the
Jacobian matrix. Because of a lack of Jacobian, Kim et al. [23] used the WMNN to estimate the front points.
Most recently, Kim et al. [20] used IMM to estimate the Fourier coefficients by considering multiple EKFs,
each working on a different measurement noise model. So far, the only experimental results available are
for static cases in closed boundary representation.

EKF is the most widely used dynamic estimation algorithm for nonlinear systems. However, it is difficult to
tune, and is only reliable for systems that are almost linear on the time scale of the updates. To overcome these
difficulties, the unscented transform (UT) was developed by Julier and Uhlmann [12,13] as a method to prop-
agate mean and covariance information through a nonlinear transformation. It is more accurate, easier to
implement, and uses the same order of calculations as linearization. Also, the linearization in EKF is possible
only if the Jacobian matrix exists. However, this is not always the case. Some systems contain discontinuities
in process model, and in another cases, the Jacobian matrices can be very difficult and error-prone process and
in most cases introduce human coding errors that undermine the performance. Therefore, in this paper, the
UKF is used to estimate the nonstationary phase boundaries represented by truncated Fourier coefficients
and does not require the use of the Jacobian matrix. UKF is feasible here as there are less shape parameters
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to estimate than the conductivity profile (which will be explained in the ensuing sections). Numerical and
experimental results are also provided to evaluate the performance of UKF over EKF.

2. Mathematical formulation

2.1. Finite element formulation of the forward problem

The numerical model used in this work is based on EIDORS [42]. The finite element model to solve the EIT
problem can be found in [25,39]. However, the finite element approximation will be described briefly to for-
mulate the inverse solution.

When electrical currents Il (l = 1,2, . . . ,L) are injected into a body X 2 R2 through the electrodes el

(l = 1,2, . . . ,L) attached on the boundary oX, and the conductivity distribution r(x,y) is known for X, the cor-
responding electrical potential u(x,y) on X can be determined uniquely from a partial differential equation,
which can be derived from the Maxwell equations:
r � ðrruÞ ¼ 0 in X ð1Þ

with the following boundary conditions based on the complete electrode model:
uþ zlr
ou
on
¼ Ul on el; l ¼ 1; 2; . . . ; L; ð2ÞZ

el

r
ou
on

dS ¼ Il; l ¼ 1; 2; . . . ; L; ð3Þ

r
ou
on
¼ 0 on oX n

[L
l¼1

el; ð4Þ
where zl is the effective contact impedance between the lth electrode and electrolyte, Ul is the potential on the
lth electrode, el, n is the outward unit normal and L is the number of electrodes. Various forms of boundary
conditions may be used in the forward model. We have chosen the complete electrode model (CEM) which
takes into account the discrete electrodes, effects of the contact impedance and the shunting effect of the elec-
trodes. In addition, the following two constraints for the injected currents and measured voltages ensure the
existence and uniqueness of the solution:
XL

l¼1

I l ¼ 0; ð5Þ

XL

l¼1

U l ¼ 0: ð6Þ
In the context of FEM, the object area is discretized into sufficiently small triangular elements having a node
at each corner and it is assumed that the resistivity distribution is constant within each element. Let N be the
number of nodes in the finite element mesh. The potential distribution u within the object is approximated as
u ’ uhðx; yÞ ¼
XN

i¼1

aiuiðx; yÞ ð7Þ
and the potential on the electrodes is represented by
U h ¼
XL�1

j¼1

bjnj; ð8Þ
where the function ui is the two-dimensional first-order basis function and the basis for the measurements are
n1 = [1,�1,0, . . . , 0]T, n2 = [1,0,�1, . . . , 0]T 2 RL�1, etc. In this ai and bi are the coefficients to be determined.

The following set of linear equations is obtained from finite element formulation:
Ab ¼ eI; ð9Þ
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where
A ¼
B C

CT D

� �
; b ¼

a

b

� �
; and eI ¼ 0

f

� �
; ð10Þ
where a = (a1, . . . ,aN)T 2 RN�1, b = (b1, . . . ,bL�1)T 2 RL�1 and 0 2 RN�1. The reduced current vector
f = (I1 � I2, I1 � I3, . . . , I1 � IL)T 2 R(L�1)�1, and the stiffness matrix A is of the form
Bði; jÞ ¼
Z

X
rrui:ruj dr þ

XL

l¼1

1

zl

Z
el

uiuj dS; i; j ¼ 1; 2; . . . ;N ; ð11Þ

Cði; jÞ ¼ � 1

zl

Z
e1

ui dS � 1

zjþ1

Z
ejþ1

ui dS

 !
;

i ¼ 1; 2; . . . ;N ;

j ¼ 1; 2; . . . ; L� 1;
ð12Þ

Dði; jÞ ¼
je1j
z1
; i 6¼ j;

je1j
z1
þ jejþ1j

zjþ1
; i ¼ j;

8<: i; j ¼ 1; 2; . . . ; L� 1; ð13Þ
where jejj is the width of the electrode j.

2.2. Boundary expression

In this paper, we consider the recovery of sufficiently smooth region boundaries. The assumption made is
that the conductivity values are known a priori, but the information about the geometry and shape is missing.
This leads to a nonlinear and ill-posed inverse problem in which the coefficients representing the boundary
shape are to be estimated. Therefore, the forward solver has to be modified as a set of coefficients representing
the boundary shapes to the data on oX.

Lets assume that the region X is divided into disjoint, simply connected domains Ak
X ¼
[P
k¼0

Ak; ð14Þ
where P regions exist in closed boundary representation as shown in Fig. 1. Assuming the region boundaries in
closed boundary strategy represented by Ck, we can then denote by vk(r) the characteristic function of subre-
gion Ak, we can write
r ¼
XP

k¼0

rkvkðrÞ: ð15Þ
By substituting (15) into (11), we obtain
Bði; jÞ ¼
XP

k¼0

Z
suppðuiujÞ\Ak

rkruiruj dr þ
XL

l¼1

1

zl

Z
el

uiuj dS; ð16Þ
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Fig. 1. Examples of smooth region boundaries.
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where supp(uiuj) is a part of domain X where both the basis functions ui and uj are non-zero. The implemen-
tation of the integrals of the form (16) has been described previously in [25,34].

In the first step, mesh elements Xm are classified into sets of elements inside the region Ak (k = 0,1) and into
set of elements intercepted by the boundary Ck. For the elements that lie in the region Ak, they are assigned
their corresponding conductivity values rk, however, for the elements that lie on the boundary Ck, the area
weighted conductivity (Figs. 2 and 3) values are assigned as [25]
re ¼
rlSl þ rrSr

Seð¼ Sl þ SrÞ
; ð17Þ
where Sl and Sr denotes the area.
We assume that the outer boundary of the body, that is, oX is known. If phase boundaries of the objects are

sufficiently smooth, they can be approximated in the form
ClðsÞ ¼
xlðsÞ
ylðsÞ

� �
¼
XNh

n¼1

cxl
n hx

nðsÞ
cyl

n hy
nðsÞ

� �
; ð18Þ
where Cl(s) (l = 1,2, . . . ,S) is the boundary of the lth object, S is the number of objects in the body, hn(s) are
periodic and differentiable basis functions and Nh is the number of basis functions (three for elliptic objects).
In this paper, we express the phase boundaries as Fourier series in two-dimensional coordinates with respect to
parameter s, that is, we use the basis functions of the form
ha
1ðsÞ ¼ 1; ð19Þ

hx
nðsÞ ¼ sinð2p

n
2

sÞ; n ¼ 2; 4; 6; . . . ;N h � 1; ð20Þ

hy
nðsÞ ¼ cosð2p

ðn� 1Þ
2

sÞ; n ¼ 1; 3; 5; . . . ;N h; ð21Þ
where s 2 [0, 1] and a denotes either x or y. The boundaries are identified with the vector c of the shape coef-
ficients, that is,
c ¼ ðcx1
1 ; . . . ; cx1

Nh
; cy1

1 ; . . . ; cy1
Nh
; . . . ; . . . ; cxs

1 ; . . . ; cxs
Nh
; cys

1 ; . . . ; cys
Nh
ÞT; ð22Þ
where c 2 R2SNh�1.

2.3. Inverse solver based on unscented Kalman filter

Before discussing UKF, it is essential to discuss EKF and pinpoint its flaws. The EKF has become a stan-
dard technique used in a number of nonlinear estimation and machine learning applications, e.g. estimating the
state of nonlinear dynamic system, estimating parameters for nonlinear system identification (learning weights
of a neural network) and dual estimation (Expectation Maximization (EM) algorithm) where both states and
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parameters are estimated simultaneously. However, in EKF, the state distribution is approximated by a Gauss-
ian random variable (GRV), which is then propagated analytically through the first-order linearization of the
nonlinear system. This can introduce large errors in the true posterior mean and covariance of the transformed
++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

++++ + ++
+
+
+

+ + 
+ + 

+
+

+ + 
+ + 

+
+

+ + 
+ + 

+
++ + 

+ + 
+

+
+ + 

+ + 
+

++ + 
+ +

+
++ + 

+ + 
+

++
+ + 

+
+

+
+ + 

+
+

+
+

+
+

+++ + 
+ + 

+
++

+ + 
+

++
+ + 

+
++

+ + 
+

+++ +++

++ + 
+

+++
++++ + +++ + +++++ + ++

++++

+
++++

++ + ++
+
+++

+++ + +

++
+
+++

+++ + + ++
+
++

++++
+

++ + 

Actual (Sampling) 

( )f ζ
ζ

∂
∂

( )f ζ ( )if ζ

true mean 

mean

covariance

Linearized (EKF) UT 

UT mean 

UT covariance

sigma points 

transformed
sigma points 

EKF mean 
EKF covariance 

true covariance

Fig. 4. An example of unscented transform for mean and covariance propagation: (a) actual; (b) first-order linearization (EKF); and (c)
unscented transform.



7096 U.Z. Ijaz et al. / Journal of Computational Physics 227 (2008) 7089–7112
GRV (see Fig. 4), which may lead to suboptimal performance and sometimes divergence of the filter. The UKF
addresses this problem by carefully choosing sample points instead of GRV, and which when propagated
through the true nonlinear system, captures the posterior mean and covariance accurately to the 3rd order
(Taylor series expansion) for any nonlinearity. The EKF, in contrast, only achieves first-order accuracy.
Remarkably, the computational complexity of the UKF is the same order as that of EKF as mentioned in [13].

Given the linear state equation and nonlinear measurement equation [20]
ck ¼ I � ck�1 þ xk�1; ð23Þ
U k ¼ hkðckÞ þ tk; ð24Þ
where xk 2 RN�1 and tk 2 RL�1 are assumed to be white Gaussian noise with covariance Q ¼ E½xkxT
k � and

R ¼ E½tktT
k � respectively. Also, hk(ck) is the forward solver to obtain boundary voltage.

Given, the stochastic nonlinear state-space model, the unscented Kalman filter algorithm [13] is as follows:
Initialize with:
ĉ0 ¼ E½c0�; ð25Þ
P0 ¼ E½ðc0 � ĉ0Þðc0 � ĉ0ÞT�; ð26Þ
ˆa
Pa

.M λ+

{ }a
i

+ -

State Equation

Nonlinear Measurement Equation 
[FEM Forward Solver] 

γ̂

γ

χ

ψ

-

P-

-U

{ }i

( ){ }m
iW

Weighted Mean 

( ){ }c
iW
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UUP∼∼

UγP
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ˆa aPγ
k=k+1
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k

Fig. 5. Block diagram of the UKF for phase boundary estimation in EIT.
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ĉa
0 ¼ E½ca� ¼ ½ ĉT

0 0 0 �T; ð27Þ

Pa
0 ¼ E½ðca

0 � ĉa
0Þðca

0 � ĉa
0Þ

T� ¼
P0 0 0

0 Q 0

0 0 R

24 35 ð28Þ
for k 2 {1, . . . ,1}.
Calculate sigma points:
va
k�1 ¼ ĉa

k�1 ĉa
k�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ kÞPa

k�1

p
ĉa

k�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ kÞPa

k�1

p� �
: ð29Þ
Time update:
vc
kjk�1 ¼ I � vc

k�1 þ vx
k�1; ð30Þ

ĉ�k ¼
X2M

i¼0

W ðmÞ
i vc

i;kjk�1; ð31Þ

P�k ¼
X2M

i¼0

W ðcÞ
i ½vc

i;kjk�1 � ĉ�k �½v
c
i;kjk�1 � ĉ�k �

T
; ð32Þ
. Experimental setup: (a) phantom; (b) plastic rods used as targets; and (c) positions where the plastic targets could be placed.



Fig. 7. Meshes used in: (a) forward solver; and (b) inverse solver.

Fig. 8. Evolution model for numerical simulations: (a) scenario 1; and (b) scenario 2.

Table 1
Parameters used in simulations for scenario 1

Parameters EKF UKF

1% White
Gaussian noise

2% White
Gaussian noise

3% White
Gaussian noise

1% White
Gaussian noise

2% White
Gaussian noise

3% White
Gaussian noise

Q 0.01IN 0.01IN 0.01IN 0.01IN 0.01IN 0.01IN

R 200IL 900IL 3000IL 10IL 90IL 300IL

P0 0.1IN 0.1IN 0.1IN 0.1IN 0.1IN 0.1IN

�a 0.001 0.01 0.1 – – –
a – – – 0.1 0.08 0.2
b – – – 2 2 2
j – – – 0 0 0
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wkjk�1 ¼ hkðvc
kjk�1Þ þ vt

k�1; ð33Þ

bU �k ¼X2M

i¼0

W ðmÞ
i wi;kjk�1: ð34Þ
Measurement update:
PeU keU k
¼
X2M

i¼0

W ðcÞ
i ½wi;kjk�1 � bU �

k �½wi;kjk�1 � bU �
k �

T
; ð35Þ

Pck Uk ¼
X2M

i¼0

W ðcÞ
i ½vc

i;kjk�1 � ĉ�k �½v
c
i;kjk�1 � ĉ�k �

T
; ð36Þ

Kk ¼ Pck Uk P
�1eU keU k

; ð37Þ

ĉk ¼ ĉ�k þ KkðUk � bU �k Þ; ð38Þ
Pk ¼ P�k � KkPeU keU k

KT
k ; ð39Þ
Reconstructed boundaries for scenario 1 with measurements perturbed by 1% white Gaussian noise. Solid line, dotted line and
line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.
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where ca ¼ ½ cT xT tT �T; va ¼ ½ ðvcÞT ðvxÞT ðvtÞT �T; k ¼ a2ðM þ jÞ �M is composite scaling param-
eter, a determines the spread of sigma points (is usually set to a small positive value e.g. 1 6 a 6 10�4). The j is
secondary scaling parameter (is usually set to 0 or 3 �M) and b is used to incorporate prior knowledge of the
distribution of c (for Gaussian distribution, b = 2 is optimal). Weights Wi are given by
W ðmÞ
0 ¼ k=ðM þ kÞ; ð40Þ

W ðcÞ
0 ¼ k=ðM þ kÞ þ ð1� a2 þ bÞ; ð41Þ

W ðmÞ
i ¼ W ðcÞ

i ¼ 1=f2ðM þ kÞg; i ¼ 1; . . . ; 2M ; ð42Þ
where M = 2N + L, N is the dimension of Fourier coefficients and L is the total number of electrodes. The
above mentioned computational procedure to compute the Fourier coefficients is also explained in block dia-
gram in Fig. 5. Here, the augmented state vector ĉa and the augmented covariance matrix Pa is updated when
the voltage measurement Uk becomes available at kth iteration. Two significant covariance matrices shown in
Fig. 5 are PeUeU and PcU. During the iterative process PeUeU will be reduced so that the transformed sigma points

(also putting Fig. 4 in perspective) move towards the cluster mean. With the introduction of the measurement
data Uk, the cluster mean will then move further towards the true mean and as a consequence PcU will be re-
duced. Here, it should be noted that if the target is static during the application of some current patterns then
the transformed sigma points will move towards the true mean and then spread again whenever the target
changes its position. Therefore, the trade-off from performance standpoint is how many current patterns
should be used and how fast should be the dynamic changes for UKF to capture them.

This method significantly differs from general Monte Carlo sampling methods which require more sample
points in an attempt to propagate an accurate (possibly non-Gaussian) distribution of state. The UKF results
in approximations that are accurate to the 3rd order for Gaussian inputs for all nonlinearities. For non-Gauss-
ian inputs, approximations are accurate to at least the 2nd order, with the accuracy of third and higher-order
moments determined by the choice of a and b in Eq. (41). The proof of this is provided in [13]. The UKF used
in this study consists of an augmented state vector that contains both the process noise vector and the mea-
surement noise vector. The reason behind taking the augmented state is to consider process and measurement
noises with non-zero means. However, if the noise is additive and white Gaussian with zero mean, one can
choose a much simpler form without taking the augmented state.

The complexity of UKF algorithm is M3, where M is the dimension of augmented state. This has the same
complexity as EKF. A number of other variations are also possible. For example, the matrix square root,
which is implemented directly using a Cholesky factorization, is in general order M3/6. However, the covari-
Fig. 10. RMSE comparison for scenario 1 with measurements perturbed by 1% white Gaussian noise.
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ance matrices are expressed recursively, and thus the square root can be computed in the order L �M2 (L is
the dimension of the voltage vector U) by performing a recursive update on the Cholesky factorization. Such
kind of UKF is called square root UKF and its implementation is covered in [38]. For practical purposes, the
alternatives are then to use the parallel implementation for sigma points calculation, to use limited measure-
ment data, or to use the square root UKF with lower complexity.

3. Numerical and experimental results

To evaluate the performance of UKF, numerical and experimental studies were performed and the perfor-
mance was assessed in comparison to extended Kalman filter (EKF) which is most often used as a dynamic
inverse solver. The EKF uses Tikhonov regularization with regularization parameter �a and regularization
matrix as identity matrix. The experimental setup shown in Fig. 6 consists of a circular phantom with a radius
of 40 mm and a height of 80 mm was considered around which L = 32 electrodes (each of length 6 mm) were
mounted. Two different meshes (Fig. 7) were used for forward (2121 nodes and 3984 elements) and inverse
Fig. 11. Reconstructed boundaries for scenario 1 with measurements perturbed by 2% white Gaussian noise. Solid line, dotted line and
dashed line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.
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solver (563 nodes and 993 elements) so that inverse crime is avoided in numerical simulations. As for the cur-
rent injection protocol, opposite current patterns are used. Traditionally, for 32 electrodes’ configuration,
there are 16 opposite current patterns. However, since the goal of the current research is to use UKF in
dynamic settings, a subset of opposite current patterns is considered in each image frame.

For numerical simulations, two scenarios are considered and their evolution models are shown in Fig. 8. In
both scenarios, a very high contrast ratio between the background (330 � 109)and target (330) is maintained,
as the final goal of this research is to model the boundaries of air bubbles in conducting liquids. Also, a total of
N = 6 Fourier coefficients are reconstructed in the inverse solver that can represent an elliptic object and also
meet the requirements of this study. In Fig. 8(a), in scenario 1, a circular target located in the south moves east
at first and then towards north along the boundary until it stops just above the center. It then starts to expand
and takes an elliptic shape. Here, a total of 64 image frames (a hypothetical number representing a frame in
which the target remains static) are considered where each frame consists of one current pattern. i.e., target
changes its position after every current pattern. Furthermore, the measurement data obtained is perturbed
with 1%, 2% and 3% relative white Gaussian noise so as to emulate the real situations. The scenarios are then
reconstructed with both EKF and UKF. As a performance metric, root mean square error (RMSE) is defined
as,
RMSEck
¼
kcestimated;k � ctrue;kk

kctrue;kk
: ð43Þ
The parameters used in scenario 1 for both UKF and EKF are shown in Table 1. The reconstructed results
and RMSE comparison are shown in Figs. 9–14. The reconstructed profiles in Figs. 9, 11 and 13 are shown
after every four current patterns. For the case where measurement data is perturbed with 1% white Gaussian
noise, it is noted that UKF is performing remarkably well in estimating the phase boundary. EKF, on the
other hand, is trailing behind after application of each current pattern. However, it is noted that in the later
part of the simulation, when the target is static and only expanding, the difference between UKF and EKF is a
bit less. From the RMSE comparison for 1% white Gaussian noise case, it can be noted that on the average,
the RMSE values for UKF are around 0.1 whereas for EKF, they are around 0.3. It can be established that a
performance gain of three times is a marked improvement. Another key point is that UKF has a smaller tran-
sition period in the start as compared to EKF, and the difference in the transition periods between the two
filters grows exponentially with the increase in measurement noise. Therefore, for 2% white Gaussian noise
case, it can be seen in Fig. 12 that the first stable estimate for UKF is obtained around the 5th current pattern
Fig. 12. RMSE comparison for scenario 1 with measurements perturbed by 2% white Gaussian noise.



Fig. 13. Reconstructed boundaries for scenario 1 with measurements perturbed by 3% white Gaussian noise. Solid line, dotted line and
dashed line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.
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and for EKF, it is obtained around the 20th current pattern. As for the 3% white Gaussian noise case, the first
stable estimate for UKF is obtained around the 15th current pattern, whereas for EKF, it is around the 35th
current pattern. From the reconstructed images of Fig. 11 for 2% white Gaussian noise case, it can be observed
that the performance of UKF is better than EKF. The reconstruction results (Fig. 13) for 3% white Gaussian
noise show that EKF has nearly failed whereas UKF is still giving a satisfactory performance. Furthermore,
UKF is estimating the position well and the only problem is the shape of the target. However, that is expected
in noisy scenarios.

In scenario 1, the emphasis was more on the movement of the target and less on the expansion of the target.
Therefore, scenario 2 is considered, whose evolution model is given in Fig. 8(b), in which a target initially
circular located in south-west, moves north and changes its shape after the application of every current pat-
tern. Here, a total of 48 image frames are considered and in each image frame, one opposite current pattern is
used. The parameters used in both UKF and EKF are shown in Table 2. The reconstructed results and RMSE
comparison are shown in Figs. 15–20. The reconstructed profiles in Figs. 15, 17 and 19 are shown after every



Fig. 14. RMSE comparison for scenario 1 with measurements perturbed by 3% white Gaussian noise.

Table 2
Parameters used in simulations for scenario 2

Parameters EKF UKF

1% White
Gaussian noise

2% White
Gaussian noise

3% White
Gaussian noise

1% White
Gaussian noise

2% White
Gaussian noise

3% White
Gaussian noise

Q 0.01IN 0.01IN 0.01IN 0.01IN 0.01IN 0.01IN

R 200IL 1000IL 6000IL 10IL 90IL 300IL

P0 0.1IN 0.1IN 0.1IN 0.1IN 0.1IN 0.1IN

�a 0.001 0.01 0.1 – – –
a – – – 0.05 0.08 0.2
b – – – 2 2 2
j – – – 0 0 0
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four current patterns. Here, the changes in the position are not abrupt, therefore, it is anticipated from the first
scenario’s expansion that the difference between UKF and EKF will be small, however, UKF will still be bet-
ter in terms of reconstructed image and RMSE. And so, for the 1% white Gaussian noise case, the recon-
structed image quality is almost similar for both filters but UKF is slightly better than EKF. In terms of
RMSE (Fig. 16), UKF (average RMSE is around 0.05) is performing two times better than EKF (average
RMSE is around 0.1). Similarly, for 2% and 3% white Gaussian noise cases, in terms of RMSE (Figs. 18
and 20), the difference between UKF and EKF is small as compared to scenario 1, however, UKF is still per-
forming better than EKF after the application of every current pattern. A similar thing that is already
observed in scenario 1 can also be seen in scenario 2 and that is the difference in transition period for higher
noise levels.

From the simulation results, it can be established that UKF has performance gains over EKF for processes
in which the dynamic changes are abrupt and that it is also possible to model boundaries of air bubbles. There-
fore, both UKF and EKF are put to use in experimental studies by considering plastic targets in saline water
(with a resistivity of 330 X cm). In Fig. 6(c), the possible positions of the plastic targets are shown in the phan-
tom. Since experimental results are a bit difficult to reconstruct and also in the current configuration, the posi-
tion changes are abrupt, therefore, multiple current injections per image frame are considered during which
the target remains stationary. Two different experiments are considered in which UKF and EKF use the
parameters shown in Table 3. In both experiments, eight image frames are considered and each image frame



Fig. 15. Reconstructed boundaries for scenario 2 with measurements perturbed by 1% white Gaussian noise. Solid line, dotted line and
dashed line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.

Fig. 16. RMSE comparison for scenario 2 with measurements perturbed by 1% white Gaussian noise.
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comprises of six current patterns. The reconstruction results for both experiments are shown in Fig. 21and
Fig. 23 after six current patterns and the RMSE comparisons are done in Figs. 22 and 24. In both experiments,
it can be seen that UKF is performing far better than EKF in terms of reconstructed boundary. In the RMSE



Fig. 17. Reconstructed boundaries for scenario 2 with measurements perturbed by 2% white Gaussian noise. Solid line, dotted line and
dashed line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.

Fig. 18. RMSE comparison for scenario 2 with measurements perturbed by 2% white Gaussian noise.
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comparisons (Figs. 22 and 24), it can be seen that mostly the RMSE for UKF is much less than EKF, how-
ever, there are certain points where the RMSE curve of both the filters almost come closer. The reason behind
this phenomenon is the repetition of the current patterns. Since from the simulations it was observed that



Fig. 19. Reconstructed boundaries for scenario 2 with measurements perturbed by 3% white Gaussian noise. Solid line, dotted line and
dashed line represent the true boundary, boundary estimated by EKF, and boundary estimated by UKF, respectively.

Fig. 20. RMSE comparison for scenario 2 with measurements perturbed by 3% white Gaussian noise.
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UKF estimates the position very fast as compared to EKF, therefore, in the first few current patterns in the
static case, the decrease in UKF is substantial as compared to EKF. However, after sometimes, when it finally
reaches the estimated position, it generally wobbles on the same spot. In the meanwhile, the EKF also con-



Table 3
Parameter used in obtaining experimental results

Parameters EKF UKF

Q 0.01IN 0.01IN

R 200IL 10IL

P0 0.1IN 0.1IN

�a 0.2 –
a – 0.2
b – 2
j – 0

Fig. 21. Reconstructed boundaries for first experiment. Solid line, dotted line and dashed line represent the true boundary, boundary
estimated by EKF, and boundary estimated by UKF, respectively.

7108 U.Z. Ijaz et al. / Journal of Computational Physics 227 (2008) 7089–7112
verges and hence the difference between UKF and EKF is reduced. In all the simulations and experimental
results, it can be noticed that RMSE for UKF is always lower than EKF. This is because UKF basically uses
nonlinear unscented transform, and EKF uses the linearized version of the measurement equation. However,
there can also be some exception to this rule, i.e., certain scenarios might favor EKF better than UKF which
can be best explained from Fig. 25 in which there are three positions of the target. Since UKF estimates fast so
it moves very fast to the second position and the slow EKF is still in the middle. However, from the second
position to the third position there is more distance for UKF to cover as compared to EKF, thus proving that
in certain cases one can also observe EKF’s RMSE to be slightly less than that of UKF. The same phenom-
enon can also be observed in a situation in which a target at position A goes to position B and then comes
back to position A. However, through extensive simulations and experimental results, it was found out that
such cases are rare and UKF on the average performs better.



Fig. 22. RMSE comparison for first experiment.

Fig. 23. Reconstructed boundaries for the first experiment. Solid line, dotted line and dashed line represent the true boundary, boundary
estimated by EKF, and boundary estimated by UKF, respectively.
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Fig. 24. RMSE comparison for the first experiment.

Fig. 25. A scenario favoring EKF. UKF path is represented by dashed line and EKF path is represented by dotted line.
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4. Conclusions

In this paper, unscented Kalman filter (UKF) is employed as an inverse solver to estimate the fast transient
changes in phase boundary in electrical impedance tomography. The phase boundary is represented by trun-
cated Fourier series. By using UKF as inverse solver, there are several performance gains over conventional
extended Kalman filter (EKF). In the case of UKF, the mean and covariance of the state estimate is calculated
to second order or better as opposed to the first order in EKF, therefore, UKF always gives better results as
compared to EKF. Secondly, no analytical Jacobian is needed to be calculated as the key point in UKF is the
nonlinear unscented transform which uses the measurement equation as such. In the past, there were several
attempts on more complicated problems in EIT where the internal dynamic equations were difficult to derive,
however, in such problems the analytical Jacobian was difficult to derive and so inaccurate numerical methods
(like perturbation method) were used in those situations. The choice to choose the three unscented transfor-
mation parameters is the only tricky issue. However, mostly in EIT, the assumption is Gaussian, so selection
of certain parameters can be done a priori, for example, j and b. In such case, the only parameter needed to be
adjusted is the spread parameter a. Therefore, the tuning of UKF does not become difficult anymore and it
requires the same number of tunning parameters as required in EKF that uses regularization, i.e., regulariza-
tion parameter �a in the case of EKF and a in the case of UKF in addition to P, Q and R which are common in
both filters. Regularization can also be considered in UKF but then one has to tune too many parameters and
is not desirable. Even without any regularization, UKF is more accurate than EKF as in the case of EKF, the
higher-order terms in the Taylor series expansion are ignored while linearizing the measurement Eq. (24).
Since the linearization error becomes part of measurement noise so the measurement noise covariance of
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EKF is higher than UKF. A higher-order EKF can also be considered to improve accuracy but it then
requires the Hessian of the forward solver which is also difficult to obtain.

UKF generates multiple sigma points and thus can be computationally intensive, however, the realizable
hardware implementation can take advantage of modern hardware extensions pertaining to vectorization
to run some of the UKF code in parallel and thus reducing the computation time. Even in the absence of par-
allelism, the computational burden can be reduced by limiting the measurement data, i.e, using few current
patterns. In this paper, the UKF was used to estimate the changes in phase boundary after the application
of a current pattern for nominal changes and for abrupt changes, very few current patterns are used. The sim-
ulations and experimental results were done to suggest a practical implication of this research in estimating the
boundaries of air bubbles in industrial processes.
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